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Abstract

Chain-of-thought (CoT) improves LLM reasoning but can be
slow and inefficient because it relies on discrete token gener-
ation. Recent implicit (answer-only) and continuous (latent-
step) alternatives aim to reduce these costs, but evaluations so
far have focused on simple benchmarks. We study how these
models perform under two key challenges of compositional
reasoning: robustness to increased chain length and the abil-
ity to exploit multiple valid reasoning paths. To probe these
axes, we introduce a MATMUL benchmark with controllable
depth and associativity-induced diversity, and a 100k-sample
GSMSK corpus with 2-5 distinct chains per question. Across
both settings, discrete CoT remains robust, while continuous
and implicit models degrade as chains lengthen and fail to
leverage reasoning diversity. We trace these failures to cur-
riculum and alignment objectives that provide weak supervi-
sion for intermediate reasoning steps and can collapse diverse
traces into a single representation. These results point to the
need for training objectives that deliver intermediate credit
assignment and preserve reasoning diversity in latent models.

Introduction

Chain-of-Thought (CoT) prompting and fine-tuning improve
the ability of Large Language Models (LLMs) to answer
challenging questions by deriving the answer step by step,
for example by decomposing into sub-questions and revising
when contradictions are detected. This reasoning is typically
produced as discrete tokens, which has several limitations: (1)
natural language is optimized for communication rather than
internal computation, inducing verbosity and inefficiency; (2)
computation per token is uniform regardless of information
content; (3) tokens are generated sequentially even when
parallel structure might be beneficial [Ye et al. 2024]; and
(4) the process is discrete and therefore non-differentiable
end-to-end.

Recent work explores continuous or implicit reasoning:
either distilling a discrete-CoT teacher into a student that
outputs the answer directly (thus reasoning only implicitly)
[Deng, Choi, and Shieber 2024], or explicitly generating con-
tinuous vectors that stand in for reasoning steps (Coconut
[Hao et al. 2024], CODI [Shen et al. 2025]). In GSM8K
[Cobbe et al. 2021], these methods appear close to discrete
CoT (e.g., 52.4% for CODI vs. 55.3% with CoT for a fine-
tuned 1B model), but such parity is hard to interpret because
directly predicting the answer (No-CoT) yields also relatively

strong results (27.6% on GSM8K). To obtain a sharper test,
we evaluate in settings where the performance difference
between CoT and No-CoT models is more significant. For
instance, on a matrix multiplication benchmark, a 1B model
achieves near-perfect accuracy with CoT reasoning but near-
zero without.

Research Questions. We ask how continuous and implicit
approaches behave with respect to two fundamental aspects
of compositional reasoning: robustness to depth and the abil-
ity to exploit multiple reasoning paths. RQ1 (Depth): how
does accuracy scale with chain length, the number of (depen-
dent) intermediate steps? RQ2 (Multi-path): when multiple
valid CoTs exist for the same problem, does multi-chain
supervision improve accuracy? To probe these axes we intro-
duce MATMUL, a synthetic benchmark with controllable
depth and associativity-induced diversity, and a GSM8SK
multi-chain corpus with 2-5 distinct traces per question.

Key findings. Across both benchmarks, we observe con-
sistent patterns. (i) Depth: On the synthetic MATMUL task,
discrete CoT maintains relatively high accuracy as chain
length increases, whereas implicit and continuous variants
show sharp drops once intermediate steps depend on earlier
ones. (ii) Multi-path: Continuous reasoning models do not
benefit to the same extent from multi-chain supervision as
their discrete counterparts.

Related Works

Explicit chain-of-thought (CoT) prompting improves multi-
step reasoning by supervising intermediate steps [Wei et al.
2022]. Test-time strategies mitigate single-trace brittleness
by sampling multiple chains and voting via self-consistency
[Wang et al. 2023], structuring subproblems with least-to-
most prompting [Zhou et al. 2023], and searching over
partial thoughts with Tree-of-Thoughts [Yao et al. 2023].
Program- or code-grounded variants disentangle computation
from explanation—e.g., Program-of-Thoughts and Chain-
of-Code—reducing arithmetic errors and enabling verifiable
execution [Chen et al. 2022, Li et al. 2023]. Tool-augmented
prompting further interleaves reasoning with actions (ReAct)
or learns API calls automatically (Toolformer), externaliz-
ing parts of the computation while preserving a discrete,
inspectable trace [Yao et al. 2022, Schick et al. 2023]. On
math benchmarks such as GSM8K [Cobbe et al. 2021], these



approaches implicitly aggregate over diverse derivations but
retain token-level supervision.

In contrast, implicit and continuous CoT aim to “think
without speaking.” Distillation-based implicit CoT trains stu-
dents to output answers without visible steps [Deng, Choi,
and Shieber 2024], while continuous variants replace text
steps with latent vectors and either anneal from discrete to
latent thoughts (Coconut) or align hidden states to a CoT
teacher (CODI) [Hao et al. 2024, Shen et al. 2025]. Diffu-
sion language models explore parallel, iterative refinement of
“thoughts” without left-to-right tokens [Ye et al. 2024]. These
methods target verbosity and latency but are less studied un-
der increasing depth or multi-path supervision. From the lens
of knowledge distillation, aligning student representations to
a teacher at limited positions can average over multi-modal
internal states, risking trace collapse unless objectives ex-
plicitly preserve mode structure [Hinton, Vinyals, and Dean
2015, Sun et al. 2019, Jiao et al. 2020].

Work on CoT faithfulness cautions that natural-language
justifications may not always reflect internal computation
[Turpin et al. 2023, Lanham, Chen et al. 2023]. Our study
complements these lines by stress-testing reasoning depth
and multi-path diversity: discrete CoT degrades gracefully
and benefits from multi-trace supervision, whereas latent/im-
plicit methods become brittle and tend to collapse across
valid traces—suggesting distributional, contrastive, or latent-
variable objectives that represent a set of traces rather than a
single alignment target.

Background and Definitions

We view compositional reasoning as solving problems that
require multiple dependent intermediate steps. We refer to
the number of such steps as the reasoning depth. Some tasks,
such as matrix multiplication, permit several equally valid
ways to combine intermediate results; we call these multi-
path problems.

Discrete, Implicit, and Continuous CoT. Let ¢;.5 denote
a sequence of natural-language thoughts, 2.5 a sequence of
latent vectors, and y the final answer. The three paradigms
differ in what is produced and supervised:

No-CoT: z -y (CEony)
Discrete CoT:  — (t1.5,y) (CE ont.s and y)
Implicit CoT: x — y, student aligned to teacher states
Continuous CoT: z — (z1.5, %), no supervision on z1.g

In alignment-style objectives, the teacher generates both
reasoning tokens ¢1.g and the final answer y, while the student
predicts only y. We denote their respective output logits as
Yteach and Yspug and their hidden representations at the answer
boundary as k!¢t psud The total loss combines (i) cross-
entropy on the teacher’s full discrete trace, (ii) cross-entropy
on the student’s answer prediction, and (iii) a hidden-state

alignment term:

L= CE(tlle:ag‘hv tT:S) + CE(yteacha y*) + CE(ystud7 y*)
+ Al — sg(hige™) |13,

MATMUL Example

Question: Multiply A-B-C-D with
AE s s B 00 = B2 =
[ %]
Chains:
M) (A-B) = 73 5] (A-B)-C) = [ %5l
@) (A-B) = [\¥" &) (C-D)=[§ 3]

—6930 —1820]

Answer: [6318 1660
§

GSMS8K-multi-chain Example

Question: Sandy wants to lose as much as Joey. Joey
loses 8 1bs in 4 weeks. Sandy needs 4 weeks to lose what
Joey loses in one week.

Chains:

(1) Joey’s weekly loss is 8/4 = 2. Sandy needs 4 weeks
to lose 2.

(2) Joey loses 8 in 4 weeks. Sandy needs 4 x the time for
the same loss.

Answer: 16 weeks

Figure 1: [llustrative instances from MATMUL and GSM8K-
multi-chain. For each question-answer pair, there are multiple
valid CoT traces.

where (t}.4,y*) are the ground-truth reasoning tokens and
answer, and sg(-) denotes stop-gradient. We refer to the ten-
dency of the alignment term to average across multiple valid
internal states as trace collapse.

Benchmarks

Our benchmarks are designed to isolate (i) how well models
scale with deeper reasoning (more steps), and (ii) whether
models can represent or exploit multiple correct chains when
those exist.

Matrix Multiplication (MATMUL)

We propose a synthetic benchmark where the input is a se-
quence of k square matrices Aj,..., Ay € R™ ™ and the
target is their product Ay A, . .. Ag. This task serves as an ex-
cellent proxy for structured, multi-step reasoning for several
reasons:

* Controllable Depth: We can precisely control the num-
ber of sequential reasoning steps by increasing k. Each
additional matrix requires another full computational step
that depends on the previous result.

* Algorithmic Diversity: Matrix multiplication is associa-
tive, meaning the order of operations can be varied (e.g.,
(A1A2) Az vs. A1(A2A3)). The number of valid parenthe-
sizations is given by the (k — 1)-th Catalan number, Cj_1,
providing a rich source of diverse yet valid reasoning
chains. For k = 4, there are C's = 5 distinct paths.

* Controllable Difficulty: We can tune the per-step diffi-
culty by changing the matrix dimension n or the distribu-
tion of the numbers within them.



For our experiments, we use k € {3, 4} with 2 x 2 matrices
containing small integers. The dataset contains 400k training
samples and 1k test samples, providing ample data to test
generalization.

GSMSK Multi-Chain

Starting from the 378k augmented GSM8K corpus [Deng,
Choi, and Shieber 2024], we prompt GPT-4.1 to generate 2 to
5 distinct CoT traces per question. The prompt instructs the
model to produce as many meaningfully different traces as
are sensible (not mere permutations of steps), and to omit the
final answer from the trace so that the answer remains a non-
trivial step derived from the CoT. This encourages the teacher
to attend to the entire reasoning process when generating the
answer, which was found to be beneficial in alignment-based
distillation [Shen et al. 2025]. The prompted GPT-4.1 model
is required to output both the reasoning chains and a final
answer, without being shown the ground truth. We retain
only those samples where the generated answer matches the
ground-truth solution. This procedure is repeated until 100k
valid instances are collected. Finally, we shuffle the order of
chains to avoid positional bias, which matters for single-chain
training.

Training Paradigms

We compare four families of models. No-CoT predicts the
answer directly from the question with cross-entropy (CE)
on the answer tokens. Discrete CoT generates a natural-
language reasoning trace followed by the answer, with CE on
both thoughts and answer. Implicit CoT distills a discrete-
CoT teacher into a student that emits only the answer. Contin-
uous CoT generates latent vectors as intermediate “thoughts”
before the answer, with no direct supervision on these vec-
tors.

For Implicit and Continuous CoT we evaluate two train-
ing paradigms. Curriculum begins from fully supervised
discrete CoT and progressively (i) drops thought tokens for
Implicit CoT or (ii) replaces them with unsupervised con-
tinuous vectors for Continuous CoT, ending with answer-
only supervision. Alignment trains a discrete-CoT teacher
alongside a student, aligning the student’s hidden state at
the answer boundary to the teacher’s (stop-gradient on the
teacher). We adopt prior models where available: Implicit
CoT with curriculum [Deng, Choi, and Shieber 2024], Co-
conut for Continuous CoT with curriculum [Hao et al. 2024],
and CODI for Continuous CoT with alignment [Shen et al.
2025]. For Implicit CoT with alignment we introduce a new
variant, Distill.

Further details on training sequences, objectives, and in-
ference procedures are given in Appendix.

Experiments and Results

We finetune Llama-3.2-1B-Instruct and GPT-2 with LoRA
[Hu et al. 2022], using rank 128, a=32, dropout 0.1, and a
batch size of 128 sequences. For methods that involve both a
teacher and student, we share model parameters between the
two and stop gradients on the teacher side when computing
alignment losses. For datasets with multiple valid chains per

question, we sample one chain uniformly at random for each
question per epoch. Evaluation is done with greedy decoding.
We report exact-match accuracy.

Discrete CoT is the most robust and benefits from mul-
tiple traces. Across both models, discrete CoT is the
most robust approach. For Llama-3.2-1B-Instruct, it achieves
near-perfect performance on MATMUL with k=3 factors
(97.2-95.6%) and remains strong at k=4 (60.9-60.5%).
GPT-2 follows a similar trend—CoT reaches 92.2-94.6% on
MATMUL (k=3) but degrades at k=4 (43.9-46.9%). In most
cases, incorporating chain diversity proves beneficial—for
example, on GSM8K (100k)—yielding performance gains of
4.1% and 3.5% for Llama and GPT-2, respectively. This im-
provement arises because including multiple valid reasoning
traces per question increases the effective dataset size.

Continuous models degrade under multi-chain supervi-
sion. Unlike CoT, which gains from diversity on the most
dataset/settings, continuous methods generally degrade (e.g.,
CODI drops from 23.5% to 18.9% in MATMUL k=3 when
trained with two chains for Llama). The main reason is that
the reasoning process operates deterministically within a con-
tinuous space. Although sampling may be used during the
final answer generation, every sample stems from the same
reasoning trajectory, lacking the path diversity required. In
the case of alignment objective, the student repeatedly sees
the same question, but must match hidden states from dif-
ferent teacher traces. By forcing the student model to match
a teacher’s hidden states from different reasoning traces for
the same question, the training objective incentivizes finding
an average representation. Lacking a mechanism to handle
multiple modes, the student collapses a rich, multimodal
distribution of valid “’thoughts” into a single, blurry, and ul-
timately incorrect mean, so additional chains are treated as
variance to be suppressed instead of structure to be modeled.

No-CoT is weak and breaks on MATMUL. The No-CoT
baseline confirms our hypothesis that standard benchmarks
can obscure model weaknesses. While it achieves modest
scores on GSMS8K (17.1% for Llama and 8.2% for GPT-2
on our 100k set), it fails completely on MATMUL, scoring
only (6.2%) for (k=3) (Llama) and (0%) for both (k=3) and
(k=4) (GPT-2). This indicates a profound failure in com-
positional generalization that persists across architectures
and scales, with both models unable to handle even simple
structured reasoning without explicit chain-of-thought super-
vision.

Continuous/Implicit methods collapse like No-CoT on
MATMUL. The failure of No-CoT extends to its latent
counterparts. Continuous and implicit methods, behave more
like No-CoT than CoT—especially with GPT-2. While they
attain modest scores on GSM8K (e.g., 10-20%), they all col-
lapse on MATMUL. This consistent breakdown across GPT-2
indicates that latent objectives provide no meaningful compo-
sitional signal: without explicit intermediate supervision, the
model’s hidden-space alignment fails to sustain multi-step
reasoning, mirroring the brittleness of No-CoT rather than
the robustness of discrete CoT.



Llama-3.2-1B-Instruct

Dataset / Setting CoT No-CoT Implicit Distill Coconut CODI
GSMS8K-aug (400k) 553 27.6 9.7 27.7 45.0 524
GSMS8K-our (100k), single chain 36.2 17.1 9.1 19.0 18.6 24.8
GSMS8K-our (100k), all chains 40.3 — 9.1 19.1 16.1 24.1
MatMul 3 x (2x2), single chain (400k)  97.2 6.2 0.0 21.8 5.7 23.5
MatMul 3 x (2x2), two chains (400k) 95.6 — 0.0 27.7 5.1 18.9
MatMul 4 x (2x2), single chain (400k)  60.5 0.0 0.0 1.0 0.0 0.0
MatMul 4 x (2x2), five chain (400k) 60.9 — 0.0 0.0 0.0 0.0
GPT-2
Dataset / Setting CoT No-CoT Implicit Distill Coconut CODI
GSM8K-aug (400k) 423 20.2 3.6 8.5 22.2 42.1
GSM8K-our (100k), single chain 16.5 8.2 3.5 6.8 10.7 15.6
GSM8K-our (100k), all chains 20.0 — 3.6 7.5 10.1 14.8
MatMul 3 x (2x2), single chain (400k)  92.2 0.0 0.0 0.0 0.0 0.0
MatMul 3 x (2x2), two chains (400k)  94.6 — 0.0 0.0 0.0 0.0
MatMul 4 x (2x2), single chain (400k)  43.9 0.0 0.0 0.0 0.0 0.0
MatMul 4 x (2x2), five chain (400k) 46.9 0.0 0.0 0.0 0.0

Table 1: Accuracy (%) for Llama-3.2-1B-Instruct and GPT-2 across datasets and training settings. Single chain = training
includes exactly one CoT trace per question per epoch; two/five chains = two/five distinct traces per question are included in the
training set (we still sample one per epoch); all chains = all available 25 traces per question are included (again sampling one

per epoch).

Continuous/implicit methods are brittle to chain length.
Distillation-style approaches (Distill, CODI) manage low-
20s accuracy on MATMUL at k=3 but collapse once chains
lengthen (Distill ~1% and CODI 0% at k=4) for Llama.
Curriculum-style approaches like Coconut is unstable (5.7%
at k=3, 0% at k=4) too. On GSMS8K, these methods reach
middling accuracy (20-25% for Llama, 10-15% for GPT-2)
but far below CoT. This brittleness reflects limitations of the
training objectives. Under curriculum learning, the number
of training stages grows with chain length, while supervision
on earlier steps is progressively weakened, allowing errors
to accumulate. Under alignment, the model receives signal
only at the answer boundary, providing no guidance on how
to generate or connect intermediate steps. As a result, longer
chains expose the lack of effective credit assignment, leading
to sharp degradation with depth.

Conclusion

Discrete chain-of-thought (CoT) remains the most reliable
interface for compositional reasoning: it degrades gracefully
as chains lengthen and, in low-data regimes, benefits from
multi-chain supervision. In contrast, current continuous and
implicit approaches are efficient but brittle: they deteriorate
with depth and fail to exploit reasoning-path diversity.

Our analysis points to objective-level causes. Curriculum

schedules dilute supervision on later steps, while alignment
losses concentrate signal at the answer boundary. Both pro-
vide weak guidance for generating and composing intermedi-
ate steps and tend to average over distinct traces, collapsing
multimodality.

Implications. For practitioners, discrete CoT is the safer
choice in settings demanding robust multi-step reasoning;
apparent parity of latent methods on easy benchmarks should
not be mistaken for reliability. For researchers, closing the
gap likely requires objectives that (i) deliver intermediate
credit assignment throughout the chain and (ii) explicitly
preserve and select among multiple valid reasoning modes
rather than averaging them.

Limitations & Opportunities. Our study highlights core
behaviors using smaller models and math-heavy tasks, pro-
viding a controlled setting that clarifies key dynamics; ex-
tending to larger models or domains with richer semantics
may further enhance robustness. Promising directions include
contrastive or distributional alignment over full traces, latent-
variable or mixture-of-traces objectives, and supervision that
attaches signal to multiple intermediate locations rather than
only at the answer boundary.
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Model Cards

Here we provide detailed model cards for all paradigms de-
scribed in the main text. We group them into four families:
No-CoT, Discrete CoT, Implicit CoT, and Continuous CoT.
For the latter two families we include both curriculum-based
and alignment-based variants. Each card specifies the in-
put—output sequences, training objectives, and inference pro-
cedures.

No-CoT (Direct Answer)

Sequence: (| Question | ( Answer
Training: CE on .
Inference: given , sample .

CoT (Discrete Reasoning)

Sequence: | Question @ Answer

Training: CE on (COT) and (Answer).

Inference: given , sample and
(Anwer),

Implicit CoT [Deng, Choi, and Shieber 2024] (via cur-
riculum learning)

Sequence: [ Question | ( CoT ) ( Answer

Training: curriculum: start with CE on

+; progressively drop to-

kens.

Inference: given , sample .
.
Distill (Implicit CoT via Alignment)

Teacher Sequence: (Question) CoT ) ( Answer
Student Sequence: | Question | ( Answer

Training: teacher: CE on +; student:
CE on ; + A L2 alignment of hidden states at
the -start position (stop-grad on teacher).
Inference: given , sample .

J

-

-




Coconut [Hao et al. 2024] (Curriculum to Continuous
CoT)

Early Sequence: (Question) (CoT ) ( Answer )
Final Sequence: [ Question (cont. CoT) (Answer)

Training: curriculum: start with CE on

+; progressively replace [ CoT
steps with (no supervision on );
end with CE on only.

Inference: given , generate | cont. CoT ) and
sample .

CODI [Shen et al. 2025] (Continuous CoT via Alignment)

Teacher Sequence: | Question @ Answer )
Student Sequence: Question cont. CoT
Training: teacher: CE on +; student:
CE on ; + A L2 alignment of hidden states at
the —start position (stop-grad on teacher).
Inference: given | Question |, generate and
sample .

N

~
A\

A\




